Hi!
I added a "lazy" widget to GNU Emacs to allow the definition of
recursive datatypes for customize. The composite widgets expand their
subtypes immediately, which cause obvious problems for recursive
datatypes. The "lazy" will only expand them when needed, hense the
name.
Here is an example:
(define-widget 'binary-tree-of-string 'lazy
"A binary tree made of cons-cells and strings."
:tag "Node"
:offset 4
:type '(choice (string :tag "Leaf" :value "")
(cons :tag "Interior"
:value ("" . "")
binary-tree-of-string
binary-tree-of-string)))
(defcustom foo-bar ""
"Sample variable holding a binary tree of strings."
:type 'binary-tree-of-string)
I suggest adding the "lazy" widget to XEmacs as well. And I'd rather
someone else did it, as I haven't touched XEmacs for a long time. The
code below should be self-contained, just add it to wid-edit.el
somewhere. And the documentation goes to the end of customize.texi in
the Lisp Reference Manual.
Regards,
Per A.
--- wid-edit.el addition -------------------------------------------
(define-widget 'lazy 'default
"Base widget for recursive datastructures.
The `lazy' widget will, when instantiated, contain a single inferior
widget, of the widget type specified by the :type parameter. The
value of the `lazy' widget is the same as the value of the inferior
widget. When deriving a new widget from the 'lazy' widget, the :type
parameter is allowed to refer to the widget currently being defined,
thus allowing recursive datastructures to be described.
The:type parameter takes the same arguments as the defcustom
parameter with the same name.
Most composite widgets, i.e. widgets containing other widgets, does
not allow recursion. That is, when you define a new widget type, none
of the inferior widgets may be of the same type you are currently
defining.
In Lisp, however, it is custom to define datastructures in terms of
themselves. A list, for example, is defined as either nil, or a cons
cell whose cdr itself is a list. The obvious way to translate this
into a widget type would be
(define-widget 'my-list 'choice
\"A list of sexps.\"
:tag \"Sexp list\"
:args '((const nil) (cons :value (nil) sexp my-list)))
Here we attempt to define my-list as a choice of either the constant
nil, or a cons-cell containing a sexp and my-lisp. This will not work
because the `choice' widget does not allow recursion.
Using the `lazy' widget you can overcome this problem, as in this
example:
(define-widget 'sexp-list 'lazy
\"A list of sexps.\"
:tag \"Sexp list\"
:type '(choice (const nil) (cons :value (nil) sexp sexp-list)))"
:format "%{%t%}: %v"
;; We don't convert :type because we want to allow recursive
;; datastructures. This is slow, so we should not create speed
;; critical widgets by deriving from this.
:convert-widget 'widget-value-convert-widget
:value-create 'widget-type-value-create
:value-delete 'widget-children-value-delete
:value-get 'widget-child-value-get
:value-inline 'widget-child-value-inline
:default-get 'widget-type-default-get
:match 'widget-type-match
:validate 'widget-child-validate)
(defun widget-child-value-get (widget)
"Get the value of the first member of :children in WIDGET."
(widget-value (car (widget-get widget :children))))
(defun widget-child-value-inline (widget)
"Get the inline value of the first member of :children in WIDGET."
(widget-apply (car (widget-get widget :children)) :value-inline))
(defun widget-child-validate (widget)
"The result of validating the first member of :children in WIDGET."
(widget-apply (car (widget-get widget :children)) :validate))
(defun widget-type-value-create (widget)
"Convert and instantiate the value of the :type attribute of WIDGET.
Store the newly created widget in the :children attribute.
The value of the :type attribute should be an unconverted widget type."
(let ((value (widget-get widget :value))
(type (widget-get widget :type)))
(widget-put widget :children
(list (widget-create-child-value widget
(widget-convert type)
value)))))
(defun widget-type-default-get (widget)
"Get default value from the :type attribute of WIDGET.
The value of the :type attribute should be an unconverted widget type."
(widget-default-get (widget-convert (widget-get widget :type))))
(defun widget-type-match (widget value)
"Non-nil if the :type value of WIDGET matches VALUE.
The value of the :type attribute should be an unconverted widget type."
(widget-apply (widget-convert (widget-get widget :type)) :match value))
--- customize.texi addition -----------------------------------------
@node Defining New Types
@subsection Defining New Types
In the previous sections we have described how to construct elaborate
type specifications for @code{defcustom}. In some cases you may want to
give such a type specification a name. The obvious case is when you are
using the same type for many user options, rather than repeat the
specification for each option, you can give the type specification a
name once, and use that name each @code{defcustom}. The other case is
when a user option accept a recursive datastructure. To make it
possible for a datatype to refer to itself, it needs to have a name.
Since custom types are implemented as widgets, the way to define a new
customize type is to define a new widget. We are not going to describe
the widget interface here in details, see @ref{Top, , Introduction,
widget, The Emacs Widget Library}, for that. Instead we are going to
demonstrate the minimal functionality needed for defining new customize
types by a simple example.
@example
(define-widget 'binary-tree-of-string 'lazy
"A binary tree made of cons-cells and strings."
:offset 4
:tag "Node"
:type '(choice (string :tag "Leaf" :value "")
(cons :tag "Interior"
:value ("" . "")
binary-tree-of-string
binary-tree-of-string)))
(defcustom foo-bar ""
"Sample variable holding a binary tree of strings."
:type 'binary-tree-of-string)
@end example
The function to define a new widget is name @code{define-widget}. The
first argument is the symbol we want to make a new widget type. The
second argument is a symbol representing an existing widget, the new
widget is going to be defined in terms of difference from the existing
widget. For the purpose of defining new customization types, the
@code{lazy} widget is perfect, because it accept a @code{:type} keyword
argument with the same syntax as the keyword argument to
@code{defcustom} with the same name. The third argument is a
documentation string for the new widget. You will be able to see that
string with the @kbd{M-x widget-browse @key{ret} binary-tree-of-string
@key{ret}} command.
After these mandatory arguments follows the keyword arguments. The most
important is @code{:type}, which describes the datatype we want to match
with this widget. Here a @code{binary-tree-of-string} is described as
being either a string, or a cons-cell whose car and cdr are themselves
both @code{binary-tree-of-string}. Note the reference to the widget
type we are currently in the process of defining. The @code{:tag}
attribute is a string to name the widget in the user interface, and the
@code{:offset} argument are there to ensure that child nodes are
indented four spaces relatively to the parent node, making the tree
structure apparent in the customization buffer.
The @code{defcustom} shows how the new widget can be used as an ordinary
customization type.
---------------------------------------------------------------------